On Spatial Skew-Gaussian Processes and Applications
نویسنده
چکیده
In many applications, observed spatial variables have skewed distributions. It is often of interest to model the shape of the skewed marginal distribution as well as the spatial correlations. We propose a class of stationary processes that have skewed marginal distributions. The covariance function of the process can be given explicitly. We study maximum likelihood inference through a Monte Carlo EM algorithm, and develop a method for the minimum mean-square error prediction. We also present two applications of the process.
منابع مشابه
Parameter Estimation in Spatial Generalized Linear Mixed Models with Skew Gaussian Random Effects using Laplace Approximation
Spatial generalized linear mixed models are used commonly for modelling non-Gaussian discrete spatial responses. We present an algorithm for parameter estimation of the models using Laplace approximation of likelihood function. In these models, the spatial correlation structure of data is carried out by random effects or latent variables. In most spatial analysis, it is assumed that rando...
متن کاملBayesian Analysis of Censored Spatial Data Based on a Non-Gaussian Model
Abstract: In this paper, we suggest using a skew Gaussian-log Gaussian model for the analysis of spatial censored data from a Bayesian point of view. This approach furnishes an extension of the skew log Gaussian model to accommodate to both skewness and heavy tails and also censored data. All of the characteristics mentioned are three pervasive features of spatial data. We utilize data augme...
متن کاملThe Tail Mean-Variance Model and Extended Efficient Frontier
In portfolio theory, it is well-known that the distributions of stock returns often have non-Gaussian characteristics. Therefore, we need non-symmetric distributions for modeling and accurate analysis of actuarial data. For this purpose and optimal portfolio selection, we use the Tail Mean-Variance (TMV) model, which focuses on the rare risks but high losses and usually happens in the tail of r...
متن کاملBayesian Analysis of Censored Spatial Data Based on a Non-gaussian Model
In this paper, we suggest using a skew Gaussian-log Gaussian model for the analysis of spatial censored data from a Bayesian point of view. This approach furnishes an extension of the skew log Gaussian model to accommodate to both skewness and heavy tails and also censored data. All of the characteristics mentioned are three pervasive features of spatial data. We utilize data augmentation metho...
متن کاملProperties of Spatial Cox Process Models
Probabilistic properties of Cox processes of relevance for statistical modeling and inference are studied. Particularly, we study the most important classes of Cox processes, including log Gaussian Cox processes, shot noise Cox processes, and permanent Cox processes. We consider moment properties and point process operations such as thinning, displacements, and superpositioning. We also discuss...
متن کامل